Ontological Interoperability of Learning Objects: A Hybrid Graphical-Neural Approach
نویسندگان
چکیده
This paper presents OntoShare, an automated ontology mapping and merging architecture for learning object retrieval and reuse. The architecture aims to offer contextual and robust ontology mapping and merging through hybrid unsupervised clustering techniques comprising of Formal Concept Analysis (FCA), Self-Organizing Map (SOM) and K-Means clustering incorporated with linguistic processing using WordNet. The merged ontology facilitates sharing and retrieval of learning objects from the Web or from different learning object repositories such as ARIADNE and Educause. Experimental results can be extended to other resources in databases or data warehouses. Key-Words: Learning object, Ontology, Hybrid clustering, Formal Concept Analysis, SOM, Interoperability
منابع مشابه
An ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملA RuleML-Based Ontology for Interoperation between Learning Objects and Learners
This paper presents a context mediation based approach for achieving interoperability among semantically heterogeneous learning objects and learners. The presented work is focused on building a common ontology for the domain of learning objects participating in data exchange. An ontological graph is proposed as a knowledge representation of the ontology, and methods for manipulating ontologies ...
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کامل